
II B.Tech - I Semester – Regular Examinations - FEBRUARY 2022

ELECTRONIC DEVICES AND AMPLIFIER CIRCUITS (Common for EEE, ECE)

Duration: 3 hours	Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries	
14 marks and have an internal choice of Questions.	
2. All parts of Ouestion must be answered in one place.	

<u>UNIT – I</u>

- a) With a circuit diagram, illustrate the operation of a 7 M common emitter amplifier and obtain its voltage gain expression.
 - b) Design a circuit similar to that shown in below figure 7 M except that now the power supplies are ± 1.5 V and the BJT has $\beta =100$ and exhibits V_{BE} of 0.8V at i_c=1mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5V appears at the collector.

Page **1** of **4**

- 2. a) Compare common base (CB), common emitter (CE) 7 M and common collector (CC) configuration of a transistor. For CE configuration prove that $I_C = \beta I_B + (\beta+1)I_{CO}$
 - b) For a CE transistor amplifier circuit, $R_1=50K\Omega$, 7 M $R_2=25K\Omega$, $R_C=10K\Omega$, $R_E=10K\Omega$, $R_L=30K\Omega$. Determine input and output impedances, current gain and voltage gain if transistor parameters are as follows $h_{ie}=2K\Omega$, $h_{fe}=100$, $h_{re}=5x10^{-4}$, $h_{oe}=25\mu$ S.

<u>UNIT – II</u>

- 3. a) Analyze the MOSFET biasing technique using a large 7 M drain-to-gate feedback resistance R_G . Design the drain-to-gate feedback biasing circuit to operate at a DC drain current of 0.5mA. Assume $V_{DD} = 5V$, k_n 'W/L=1mA/V², $\lambda = 0$.
 - b) What are the main constructional differences between a 7 M MOSFET and a BJT? What effect do they have on the current conduction mechanism of a MOSFET?

OR

- 4. a) With neat diagram analyze the operation of MOSFET 7 M in depletion mode and derive its current equations.
 - b) Differentiate between current voltage relationships of 7 M the N channel and P channel MOSFET.

UNIT-III

5. a) Obtain the expression for low frequency response of a 7 M MOSFET common source amplifier.

b) A MOSFET is to operate at $I_D=0.1$ mA and is to have 7 M $g_m=1$ mA/V. If $k_n=50\mu$ A/V². Estimate the required W/L ratio and the overdrive voltage.

OR

- 6. a) Analyze the internal capacitances of a MOSFET and 7 M hence draw the high frequency model of MOSFET.
 - b) Estimate the mid band gain A_M , and the upper 3-dB 7 M frequency f_H of a MOSFET CS amplifier fed with a signal source having an internal resistance $R_{sig}=100 \text{ k}\Omega$. The amplifier has $R_G=4.7M\Omega$, $R_D=R_L=15k\Omega$, , $g_m=1mA/V$, $r_o=150k\Omega$, $C_{gs}=1pF$ and $C_{gd}=0.4pF$

$\underline{UNIT} - IV$

- 7. a) Explain the MOS differential pair with common mode 7 M input voltage and specify the input common mode voltage range.
 - b) Show that if all transistors are operated at an overdrive 7 M voltage V_{ov} and have equal Early voltages $|V_A|$, the gain is given by $A_d = 2(V_A/V_{oV})^2$. Estimate the gain for $V_{ov}= 0.25$ V and $V_A = 20$ V.

OR

- 8. a) Obtain input offset voltage of the MOS differential pair 7 M with necessary diagrams.
 - b) An NMOS differential amplifier utilizes a bias current 7 M of 200 μ A. The device have V_t =0.8V, W=100 μ m, and L=1.6 μ m, in a technology for which $\mu_n C_{ox}$ = 90 μ A/V². Find V_{GS}, g_m and the value of V_{id} for full-current switching. To what value should the bias current be changed in order to double the value of V_{id} for full-

current switching?

<u>UNIT – V</u>

- 9. a) Compare the operating regions of Bipolar and MOS 7 M transistors.
 - b) Interpret the current steering circuit using five 7 M MOSFET transistors and distinguish the current source and current mirror.

OR

- 10. a) Explain the operation of MOS current steering circuit 7 M and mention its advantages.
 - b) Show that for a MOSFET the selection of L and V_{ov} 7 M determines A_0 and f_T . In other words, show that A_0 and f_T will not depend on I_D and W.